Abstract
A prominent source of hydroxyl radicals (•OH), nitrous acid (HONO) plays a key role in tropospheric chemistry. Apart from direct emission, HONO (or its conjugate base nitrite, NO2-) can be formed secondarily in the atmosphere. Yet, how secondary HONO forms requires elucidation, especially for heterogeneous processes involving numerous organic compounds in atmospheric aerosols. We investigated nitrite production from aqueous photolysis of nitrate for a range of conditions (pH, organic compound, nitrate concentration, and cation). Upon adding small oxygenates such as ethanol, n-butanol, or formate as •OH scavengers, the average intrinsic quantum yield of nitrite [Φ(NO2-)] was 0.75 ± 0.15%. With near-UV-light-absorbing vanillic acid (VA), however, the effective Φ(NO2-) was strongly pH-dependent, reaching 8.0 ± 2.1% at a pH of 8 and 1.5 ± 0.39% at a more atmospherically relevant pH of 5. Our results suggest that brown carbon (BrC) may greatly enhance the nitrite production from the aqueous nitrate photolysis through photosensitizing reactions, where the triplet excited state of BrC may generate solvated electrons, which reduce nitrate to NO2 for further conversion to nitrite. This photosensitization process by BrC chromophores during nitrate photolysis under mildly acidic conditions may partly explain the missing HONO in urban environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.