Abstract

It has been found that 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert various vascular protective effects, beyond their cholesterol-lowering property, including inhibition of platelet-dependent thrombus formation. The objective of the present study was to determine whether the nitric oxide (NO)/cyclic GMP-mediated processes in platelets contribute to the anti-aggregatory activity of simvastatin. After rabbit platelets were incubated with simvastatin for 5 min, aggregation was induced and the platelet aggregation, nitric oxide synthase activity, guanylyl cyclase activity, NO and cyclic GMP formation were measured appropriately. Treatment with simvastatin concentration-dependently inhibited platelet aggregation induced by collagen or arachidonic acid with an IC(50) range of 52-158 microM. We also demonstrated that simvastatin (20-80 microM) concentration-dependently further enhanced collagen-induced NO and cyclic GMP formation through increasing NOS activity (from 2.64+/-0.12 to 3.52+/-0.21-5.10+/-0.14 micromol min(-1) mg protein(-1)) and guanylyl cyclase activity (from 142.9+/-7.2 to 163.5+/-17.5-283.8+/-19.5 pmol min(-1) mg protein(-1)) in the platelets. On the contrary, inhibition of platelet aggregation by simvastatin was markedly attenuated (by about 50%) by addition of a nitric oxide synthase inhibitor, a NO scavenger or a NO-sensitive guanylyl cyclase inhibitor. The anti-aggregatory effects of simvastatin were significantly increased by addition of a selective inhibitor of cyclic GMP phosphodiesterase. Our findings indicate that enhancement of a NO/cyclic GMP-mediated process plays an important role in the anti-aggregatory activity of simvastatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.