Abstract

Author(s): Li, QP; Franks, PJS; Ohman, MD; Landry, MR | Abstract: Processes that occur at mesoscale and submesoscale features such as eddies and fronts are important for marine ecosystem dynamics and biogeochemical fluxes. However, their impacts on the fate of biogenic organic carbon in coastal oceans are not well quantified because physical and biological interactions at such features are very complex with short time-and small spatial scales variability. As part of the California Current Ecosystem Long-Term Ecological Research (CCE-LTER) Process studies in the southern California Current in October 2008, we sampled across a strong temperature and chlorophyll front ('A-Front') separating water masses with distinct hydrographic and biogeochemical characteristics and a modified biological assemblage at the frontal interface. Thorpe-scale analyses of the hydrographic data from a free-fall moving vessel profiler suggested an increased diapycnal diffusive nitrate flux at the front zone. Based on these field data, we use data-driven diagnostic biogeochemical models to quantify how the front-induced physical mixing influenced the production, grazing and transport of phytoplankton carbon in the southern California Current. Our results suggest that enhanced diffusive diapycnal fluxes of nutrients stimulated phytoplankton primary production at the front; this effect, together with reduced microzooplankton grazing, increased net growth of the phytoplankton community leading to locally enhanced biomass of large phytoplankton, such as diatoms, in the frontal zone. © 2012 The Author.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.