Abstract

The capability of electrocatalytic reduction of carbon dioxide (CO2) using nitrogen (N)-doped carbon strongly depends on the N-doping level and their types. In this work, we developed a strategy to generate mesoporous N-doped carbon frameworks with tunable configurations and contents of N dopants, by using a secondary doping process via the treatment of N,N-dimethylformamide (DMF) solvent. The obtained mesoporous N-doped carbon (denoted as MNC-D) served as an efficient electrocatalyst for electroreduction of CO2 to CO. A high Faradaic efficiency of ∼ 92% and a partial current density for CO of −6.8 mA·cm−2 were achieved at a potential of −0.58 V vs. RHE. Electrochemical analyses further revealed that the active sites within the N-doped carbon catalysts were the pyridinic N and defects generated by the DMF treatment, which enhanced the activation and adsorption CO2 molecules. Our study suggests a new approach to develop efficient carbon-based catalysts for potential scalable CO2RR to fuels and chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.