Abstract

A method for improving the accuracy of surface shape measurement by multiwavelength holography is presented. In our holographic setup, a Bi12TiO20 photorefractive crystal was the holographic recording medium, and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. On employing such lasers the resulting holographic image appears covered with interference fringes corresponding to the object relief, and the interferogram spatial frequency is proportional to the diode laser's free spectral range (FSR). Our method consists in increasing the effective free spectral range of the laser by positioning a Fabry-Perot étalon at the laser output for mode selection. As larger effective values of the laser FSR were achieved, higher-spatial-frequency interferograms were obtained and therefore more sensitive and accurate measurements were performed. The quantitative evaluation of the interferograms was made through the phase-stepping technique, and the phase map unwrapping was carried out through the cellular-automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared with respect to measurement noise and visual inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.