Abstract

Optimal scheduling of microgrids (MGs) is a crucial component of smart grid optimization, playing a vital role in minimizing energy consumption and environmental degradation. However, existing methods tend to consider only a single optimization and do not consider the multiobjective optimization problem of MGs in a comprehensive and integrated way. This study proposes a comprehensive multiobjective optimal scheduling methodology for renewable energy MGs, incorporating demand-side management (DSM) considerations. Initially, a DSM multiobjective optimization model is formulated, focusing on the load shifting of controllable devices within the MG to refine the electricity consumption structure. This model contemplates the renewable energy consumption of the MG, customer electricity purchase costs, and load smoothness. Subsequently, a multiobjective optimization model for grid-connected MGs, encompassing wind and photovoltaic power generation, is constructed with the dual objectives of economic and environmental optimization for the MG. Ultimately, a multimodal multiobjective optimization algorithm, amalgamating a local convergence index and an environment selection strategy, is proposed to solve the model. The experimental results show that compared with other methods, the proposed method in this paper can reduce the integrated cost by 32.6% and 38.9% in summer and 19.4% and 40.2% in winter. This stands out as a unique contribution in the field of MG optimization, as it integrates DSM considerations into a multiobjective optimization model. This methodology achieves a balance between minimizing energy consumption and environmental degradation while also enhancing economic efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call