Abstract

Bi1−xPrxFe0.97Mn0.03O3 (x=0.00, 0.05, 0.10, 0.15, 0.20) thin films were deposited on FTO/glass substrate using chemical solution deposition. The influences of Pr doping on the crystalline structure and multiferroic properties were investigated. In the X-ray diffraction and Raman spectra results, the crystal structures of Bi1−xPrxFe0.97Mn0.03O3 films revealed a gradual transformation from the trigonal structure to the tetragonal structure. The leakage current densities of Bi1−xPrxFe0.97Mn0.03O3 films are one order of magnitude lower than that of BiFeO3. Compared with unsaturated polarization-electric field hysteresis loop of BiFeO3 film, the Pr and Mn co-doped BFO films have significantly improved ferroelectric properties. The improved remnant polarization (Pr=91.3µC/cm2) and the positive switching current (I=0.028A) have been observed in Bi0.85Pr0.15Fe0.97Mn0.03O3 film. The improved electrical properties are attributed to the structure transformation, increasing grain boundaries, low oxygen vacancies ratio and increasing Fe3+ concentration. In addition, the saturation magnetization of Bi0.85Pr0.15Fe0.97Mn0.03O3 film is 1.81emu/cm3, which is approximately three times higher than pure BiFeO3 (Ms=0.67emu/cm3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call