Abstract

This study introduces the Worst Moth Disruption Strategy (WMFO) to enhance the Moth Fly Optimization (MFO) algorithm, specifically addressing challenges related to population stagnation and low diversity. The WMFO aims to prevent local trapping of moths, fostering improved global search capabilities. Demonstrating a remarkable efficiency of 66.6 %, WMFO outperforms the MFO on CEC15 benchmark test functions. The Friedman and Wilcoxon tests further confirm WMFO's superiority over state-of-the-art algorithms. Introducing a hybrid model, WMFO-MLP, combining WMFO with a Multi-Layer Perceptron (MLP), facilitates effective parameter tuning for carbon emission prediction, achieving an outstanding total accuracy of 97.8 %. Comparative analysis indicates that the MLP-WMFO model surpasses alternative techniques in precision, reliability, and efficiency. Feature importance analysis reveals that variables such as Oil Efficiency and Economic Growth significantly impact MLP-WMFO's predictive power, contributing up to 40 %. Additionally, Gas Efficiency, Renewable Energy, Financial Risk, and Political Risk explain 26.5 %, 13.6 %, 8 %, and 6.5 %, respectively. Finally, WMFO-MLP performance offers advancements in optimization and predictive modeling with practical applications in carbon emission prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.