Abstract

Recent studies from our laboratory have demonstrated that clonal cell proliferation of early passage Syrian hamster embryo (SHE) cells is optimal at a bicarbonate concentration in the culture medium of 8.9 mM (pH 6.65-6.75) under the experimental conditions reported. The purpose of the studies reported here was to examine whether morphological transformation induced by benzo[a]pyrene (BP) was enhanced under optimal culture conditions for SHE cell proliferation. Culture media of pH 6.70, 7.11 and 7.34 under incubator conditions of 10% CO2 in air were obtained by the addition of 0.75 (8.9 mM), 2.25 (26.8 mM) and 3.75 g/l (44.6 mM) of NaHCO3 respectively to a modified formulation of Dulbecco's modified Eagles medium. The frequency of morphological transformation of SHE cells was increased at 8.9 mM bicarbonate (pH 6.70) relative to media containing 26.8 or 44.6 mM bicarbonate (pH 7.11 and 7.34 respectively). Additionally, the isolate of embryo cells and lot of fetal bovine serum used supported transformation induced by BP at 8.9 mM bicarbonate (pH 6.70), but did not with media of higher bicarbonate concentration and pH. The duration of cell culture and the no. of colonies per plate influenced the amount of increase of morphological transformation observed at 8.9 mM bicarbonate relative to media of higher bicarbonate concentration. Initial studies have shown that a fraction of morphologically transformed colonies generated at reduced bicarbonate concentration were tumorigenic in newborn hamsters. These results are discussed in terms of the potential utility of low bicarbonate concentration cultured SHE cells for transformation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.