Abstract

Molecular charge asymmetrically distributed in a diffusing tagged particle causes a nonzero electrostatic force balanced by an opposing van der Waals (vdW) force. Fluctuations of electrostatic and vdW forces are highly correlated, and they destructively interfere in the force variance. This phenomenology is caused by the formation of a structurally frozen hydration layer for a particle diffusing in water and is responsible for a substantial speedup of translational diffusion compared to traditional theories of dielectric friction. Diffusion of proteins is insensitive to charge mutations, while smaller particles with asymmetric charge distribution can show a strong dependence of translational and rotational diffusion on molecular charge. Dielectric calculations of the electrostatic force require low values of ≃5 for the effective dielectric constant of interfacial water to be consistent with simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.