Abstract
Magnetic Levitation is a process in which an object is suspended with the support of the magnetic field. Despite being an unstable system, Magnetic Levitation Systems (MAGLEV) have profound applications in various fields of engineering. MAGLEV systems are sensitive, unstable, and nonlinear and uncertainties always pose a challenge in Controller Design. As a solution, adaptive controllers came into existence with adaptation mechanisms to cover the system uncertainties. In this study, a simple, novel, and an effective approach to the Enhanced Adaptive Control scheme is proposed for the ball position control and tracking of an unstable Magnetic Levitation System. The proposed Enhanced Model Reference Adaptive Scheme (EMRAC) follows the same phenomenon of the Model Reference Adaptive Scheme (MRAC) with a slight difference in its control strategy. The proposed scheme consists of Proportional-Integral-Velocity plus Feed Forward as the control structure and a modified version of the standard tuning rule is used as the adaptation mechanism. The control scheme is applied to a standard benchmark Magnetic Levitation System and the tracking performance of the scheme is tested by applying square and multi-sine pattern trajectories to the Magnetic Levitation System. The performance of the developed Enhanced MRAC performance is compared with that of the Proportional Integral Velocity with Feedforward Control (PIV+FF) scheme and the proposed control scheme is proven to be more suitable. The performance of the proposed scheme is also analyzed with Power Spectral Density and Root Mean Square Error to evaluate the ball position tracking control. It is inferred from the experimental results that Enhanced MRAC accommodates the changes and makes the system more reliable with good tracking ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.