Abstract

Marine electric propulsion is an important topic in the research of modern ships and underwater vehicles. The propulsion motor drives based on model predictive control (MPC) are becoming increasingly popular in marine propulsion systems as an emerging technology. However, the multi-objective optimization in conventional MPC requires cumbersome weighting factor tuning. The relatively large computational cost is also detrimental to the industrial application of MPC. Aiming at reducing the computational complexity of multi-objective optimization without weighting factors, this paper proposes an enhanced ranking-based MPC method for induction motor drives in marine electric power propulsion. The presented control set pre-optimization aims to reduce the computational complexity of enumeration and ranking. Based on the sign of torque prediction deviation, the proposed method avoids enumerating all fundamental voltage vectors. Consequently, the number of candidate elements in the initial control set are reduced to four without excessively excluding feasible solutions. By converting predicted numerical errors into ranking results, the proposed MPC seeks the optimal solution among the candidates through improved ranking evaluation. Considering the situation of simultaneous optimal ranking, the normalization error judgment is developed to further optimize the optimal solution selection process. The simulation and experimental results confirm that the proposed MPC is simple and effective. Without the involvement of tuning the weighting factors, the proposed method achieves good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.