Abstract
Understanding plastic deformation of crystals in terms of the fundamental physics of dislocations has remained a grand challenge in materials science for decades. To overcome this, the Discrete Dislocation Dynamics (DDD) method has been developed, but its lack of atomistic resolution leaves open the possibility that certain key mechanisms may be overlooked. By comparing large-scale Molecular Dynamics (MD) with DDD simulations performed under identical conditions we uncover significant discrepancies in the predicted strength and microstructure evolution in BCC crystals under high-strain rate conditions. These are traced to unexpected behaviors of dislocation network nodes forming at dislocation intersections, that can move in ways not previously anticipated as revealed by MD. Once these newfound freedoms of nodal motion are incorporated, DDD simulations begin to closely match plastic evolution observed in MD. This additional mechanism of motion whereby non-screw dislocations can change their glide plane profoundly affects fundamental processes of dislocation multiplication, recovery and storage that define strength of metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.