Abstract

Deconvoluting mixture samples is one of the most challenging problems confronting DNA forensic laboratories. Efforts have been made to provide solutions regarding mixture interpretation. The probabilistic interpretation of Short Tandem Repeat (STR) profiles has increased the number of complex mixtures that can be analyzed. A portion of complex mixture profiles, particularly for mixtures with a high number of contributors, are still being deemed uninterpretable. Novel forensic markers, such as Single Nucleotide Variants (SNV) and microhaplotypes, also have been proposed to allow for better mixture interpretation. However, these markers have both a lower discrimination power compared with STRs and are not compatible with CODIS or other national DNA databanks worldwide. The short-read sequencing (SRS) technologies can facilitate mixture interpretation by identifying intra-allelic variations within STRs. Unfortunately, the short size of the amplicons containing STR markers and sequence reads limit the alleles that can be attained per STR. The latest long-read sequencing (LRS) technologies can overcome this limitation in some samples in which larger DNA fragments (including both STRs and SNVs) with definitive phasing are available. Based on the LRS technologies, this study developed a novel CODIS compatible forensic marker, called a macrohaplotype, which combines a CODIS STR and flanking variants to offer extremely high number of haplotypes and hence very high discrimination power per marker. The macrohaplotype will substantially improve mixture interpretation capabilities. Based on publicly accessible data, a panel of 20 macrohaplotypes with sizes of ~ 8kbp and the maximum high discrimination powers were designed. The statistical evaluation demonstrates that these macrohaplotypes substantially outperform CODIS STRs for mixture interpretation, particularly for mixtures with a high number of contributors, as well as other forensic applications. Based on these results, efforts should be undertaken to build a complete workflow, both wet-lab and bioinformatics, to precisely call the variants and generate the macrohaplotypes based on the LRS technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.