Abstract

Mixing at low Reynolds numbers, especially in the framework of confined flows occurring in Hele-Shaw cells, porous media, and microfluidic devices, has attracted considerable attention lately. Under such circumstances, enhanced mixing is limited due to the lack of turbulence, and absence of sizable inertial effects. Recent studies, performed in rectangular Hele-Shaw cells, have demonstrated that the combined action of viscous fluid fingering and alternating injection can dramatically improve mixing efficiency. In this work, we revisit this important fluid mechanical problem, and analyze it in the context of radial Hele-Shaw flows. The development of radial fingering instabilities under alternating injection conditions is investigated by intensive numerical simulations. We focus on the impact of the relevant physical parameters of the problem (Péclet number Pe, viscosity contrast A, and injection time interval Δt) on fluid mixing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.