Abstract
Growing ruminants under extended dietary restriction exhibit compensatory growth upon ad libitum feeding, which is associated with increased feed efficiency, lower basal energy requirements, and changes in circulating concentrations of metabolic hormones. To identify mechanisms contributing to these physiological changes, 8-month-old steers were fed either ad libitum (control; n = 6) or 60-70% of intake of control animals (feed-restricted; n = 6) for a period of 12 weeks. All steers were fed ad libitum for the remaining 8 weeks of experimentation (realimentation). Liver was biopsied at days -14, +1, and +14 relative to realimentation for gene expression analysis by microarray hybridization. During early realimentation, feed-restricted steers exhibited greater rates of gain and feed efficiency than controls and an increase in expression of genes functioning in cellular metabolism, cholesterol biosynthesis, oxidative phosphorylation, glycolysis, and gluconeogenesis. Gene expression changes during feed restriction were similar to those reported in mice, indicating similar effects of caloric restriction across species. Based on expression of genes involved in cell division and growth and upregulation of genes encoding mitochondrial complex proteins in early realimentation, it was concluded that reduced hepatic size and increased mitochondrial function may contribute to improved feed efficiency observed during compensatory growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.