Abstract

Bioaugmentation methods are frequently employed for pesticide pollution remediation; however, it is not clear whether the introduced bacteria affect the pesticide bound residue (BRs) composition and whether the BRs can be catabolized by the introduced strains. This study aimed at answering these questions by using 14C-chlorpyrifos (14C-CPF) and two CPF-degrading strains (Pseudomonas sp. DSP-1 and Cupriavidus sp. P2). The results showed that the BRs can be up to 83.0%, and that the CPF-BRs formed can be further transformed into 14CO2 by the strains. Indeed, the microbial inoculation can increase the CPF mineralization by 1.0–22.1 times and can decrease the BRs by up to ~50% of the control (on day 20). Compared with the control without bioaugmentation, microbial inoculation enhanced the release of BRs by 2.2–18.0 times. Adding biochar to the soil can greatly inhibit CPF mineralization and maintain the BR content at a relatively stable level. The CPF residue can affect the composition of the indigenous soil microbial community, but the introduction of bacteria for remediation did not have a significant effect. The results indicate that Pseudomonas sp. DSP-1 and Cupriavidus sp. P2 are useful for remediating both CPF extractable and bound residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call