Abstract
An enhanced measurement of the microwave (MW) electric (E) field is proposed using an optical grating in Rydberg atoms. Electromagnetically induced transparency (EIT) of Rydberg atoms appears driven by a probe field and a control field. The EIT transmission spectrum is modulated by an optical grating. When a MW field drives the Rydberg transition, the central principal maximum of the grating spectrum splits. It is interesting to find that the magnitude of the sharp grating spectrum changes linearly with the MW E-field strength, which can be used to measure the MW E-field. The simulation result shows that the minimum detectable E-field strength is nearly 1/8 of that without gratings, and its measurement accuracy could be enhanced by about 60 times. Other discussion of MW metrology based on a grating spectrum is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.