Abstract

The combination of multiple loss characteristics is an effective approach to achieve broadband microwave wave absorption performance. The Fe-doped SiOC ceramics were synthesized by polymer derived ceramics (PDCs) method at 1500 °C, and their dielectric and magnetic properties were investigated at 2–18 GHz. The results showed that adding Fe content effectively controlled the composition and content of multiphase products (such as Fe3Si, SiC, SiO2 and turbostratic carbon). Meanwhile, the Fe promoted the change of the grain size. The Fe3Si enhanced the magnetic loss, and the SiC and turbostratic carbon generated by PDCs process significantly increased the polarization and conductance loss. Besides, the magnetic particles Fe3Si and dielectric particles SiO2 improved the impedance matching, which was beneficial to EM wave absorption properties. Impressively, the Fe-doped SiOC ceramics (with Fe addition of 3 wt %) presented the minimum reflection coefficient (RCmin) of −20.5 dB at 10.8 GHz with 2.8 mm. The effective absorption bandwidth (EAB, RC < −10 dB) covered a wide frequency range from 5 GHz to 18 GHz (covered the C, X and Ku-band) when the absorbent thickness increased from 2 mm to 5 mm. Therefore, this research opens up another strategy for exploring novel SiOC ceramics to design the good EM wave-absorbing materials with broad absorption bandwidth and thin thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.