Abstract

An efficient scheme was designed to selectively synthesize different categories of core/shell structured magnetic nanoparticles/carbon-based nanohybrids such as Fe3O4/C and Fe/helical carbon nanotubes (HCNTs) through the decomposition of acetylene directly over Fe2O3 nanotubes by controlling the pyrolysis temperature. The measured electromagnetic parameters indicated that the Fe/HCNT nanohybrids exhibited enhanced microwave absorption properties, which may be related to their special structures. The optimum reflection loss (RL) could reach −47.1dB at 17.39GHz with a matching thickness of 1.39mm. The absorption bandwidth with the RL values below −20dB was up to 11.59GHz. Moreover, based on the obtained results, the possible enhanced EM absorption mechanisms were also discussed in detail. The results show excellent microwave absorption materials that are lightweight, have strong absorption and a wide absorption frequency band may be realized in these nanohybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.