Abstract

In the face of increasingly severe electromagnetic (EM) wave pollution, the research of EM wave absorbing materials is an effective solution. To reduce the density of traditional absorbing materials, in this work, FeCo/CoFe2O4/carbon nanofiber composites were successfully prepared by electrospinning for the EM wave attenuation application. Benefiting from the loss ability of interface polarization, dipole polarization, and magnetic loss, the composites obtained a bandwidth of 5.0 GHz at a 1.95 mm thickness and an absorption peak of -52.3 dB. More importantly, the radar cross section (RCS) reduction of composite coatings calculated by ANSYS Electronics Desktop 2018 (HFSS) can reach 34.5 dBm2, and the RCS value is almost less than -10 dBm2 when the incident angle is greater than 20°, demonstrating great scattering ability of the material coating to EM waves. This work, combined with the exploration of the mechanism and the simulation analysis of the absorbing coating, will be of significance for the development of absorbing materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call