Abstract

Campylobacter jejuni-mediated pathogenesis involves gut adherence and translocation across intestinal cells. The current study was undertaken to examine the C. jejuni interaction with and translocation across differentiated Caco-2 cells to better understand Campylobacter's pathogenesis. The efficiency of C. jejuni 81-176 invasion of Caco-2 cells was two- to threefold less than the efficiency of invasion of INT407 cells. Adherence-invasion analyses indicated that C. jejuni 81-176 adhered to most INT407 cells but invaded only about two-thirds of the host cells over 2 h (two bacteria/cell). In contrast, only 11 to 17% of differentiated Caco-2 cells were observed to bind and internalize either C. jejuni strain 81-176 or NCTC 11168, and a small percentage of infected Caco-2 cells contained 5 to 20 internalized bacteria per cell after 2 h. Electron microscopy revealed that individual C. jejuni cells adhered to the tips of host cell microvilli via intimate flagellar contacts and by lateral bacterial binding to the sides of microvilli. Next, bacteria were observed to bind at the apical host membrane surface via presumed interactions at one pole of the bacterium and with host membrane protrusions located near intercellular junctions. The latter contacts apparently resulted in coordinated, localized plasma membrane invagination, causing simultaneous internalization of bacteria into an endosome. Passage of this Campylobacter endosome intracellularly from the apical surface to the basolateral surface occurred over time, and bacterial release apparently resulted from endosome-basolateral membrane fusion (i.e., exocytosis). Bacteria were found intercellularly below tight junctions at 60 min postinfection, but not at earlier times. This study revealed unique host cell adherence contacts, early endocytosis-specific structures, and a presumptive exocytosis component of the transcellular transcytosis route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.