Abstract
Hydrogen and methane commonly co-exist in aquifer. Either hydrogen or methane has been individually utilized as electron donor for bio-reducing chromate. However, little is known whether microbial chromate reduction would be suppressed or promoted when both hydrogen and methane are simultaneously supplied as joint electron donors. This study for the first time demonstrated microbial chromate reduction rate could be accelerated by both hydrogen and methane donating electrons. The maximum chromate reduction rate (4.70 ± 0.03 mg/L·d) with a volume ratio of hydrogen to methane at 1:1 was significantly higher than that with pure hydrogen (2.53 ± 0.02 mg/L·d) or pure methane (2.01 ± 0.02 mg/L·d) as the sole electron donor (p < 0.01). High-throughput 16S rRNA gene amplicon sequencing detected potential chromate reducers (e.g., Spirochaetaceae, Delftia and Azonexus) and hydrogenotrophic bacteria (e.g., Acetoanaerobium) and methane-metabolizing microorganisms (e.g., Methanobacterium), indicating that these microorganisms might play important roles on microbial chromate reduction using both hydrogen and methane as electron donors. Abundant hupL and mcrA genes responsible for hydrogen oxidation and methane conversion were harbored, together with chrA gene for chromate reduction. More abundant extracellular cytochrome c and intracellular NADH were detected with joint electron donors, suggesting more active electron transfers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.