Abstract

We present an enhanced method for synthesizing a novel compound, 1-(4-phenylquinolin-2-yl)propan-1-one (3), through the solvent-free Friedländer quinoline synthesis using poly(phosphoric acid) as an assisting agent. The crystal structure of compound 3 is analyzed using FT-IR, and the chemical shifts of its 1H- and 13C NMR spectra are measured and calculated using B3LYP/6-311G(d,p), CAM-B3LYP/6-311G(d,p), and M06-2X/6-311G(d,p) basis sets in the gas phase. Additionally, the optimized geometry of quinoline 3 is compared with experimental X-ray diffraction values. Through density functional theory calculations, we explore various aspects of the compound's properties, including noncovalent interactions, Hirshfeld surface analysis, nonlinear optical properties, thermodynamic properties, molecular electrostatic potential, and frontier molecular orbitals. These investigations reveal chemically active sites within this quinoline derivative that contribute to its chemical reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.