Abstract
Neurotransmitters are prominent candidates for trans-cellular signals that influence the development of the CNS. The present study has examined the effect of glutamate on survival, differentiation and metabolic activity of cultured rat retinal ganglion cells at 3 days in vitro. Retinal cultures from neonatal Wistar rats were treated with glutamate for 48 h. The metabolic activity was markedly increased in the retinal ganglion cells exposed to 20 μM glutamate. This was accompanied by an enhanced survival of these neurons. The number of differentiated retinal ganglion cells as determined by microtubule-associated protein-2 labeling was significantly increased following exposure to low but not higher doses of glutamate. The effect of glutamate on the metabolic activity and differentiation was blocked by tetrodotoxin. The results of the present study shows that glutamate has a significant effect on survival, differentiation and metabolic activity. An increase in the metabolic activity indicates an enhancement in the electrical activity. Thus, our results are consistent with the hypothesis that glutamate is critically involved in the regulation of electrical activity in developing rat retinal ganglion cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.