Abstract

Cu(In,Ga)Se2 (CIGS) is a promising candidate for flexible photovoltaics because of its outstanding efficiency and flexibility. Despite its advantages, achieving high-efficiency CIGS solar cells on a flexible polyimide (PI) substrate is challenging as it requires a low-temperature process and relaxation of the thermal expansion. This limitation is critical in CIGS modules, particularly for monolithic interconnection processes by laser scribing. Furthermore, Mo back-contact (BC)-based PI cells are sensitive to each laser processing step. Laser scribing is one of the important processes in thin-film module manufacturing. In this study, for the first time, we applied indium tin oxide (ITO) instead of Mo as a BC layer on the spin-coated PI on soda-lime glass to obtain mechanically durable CIGS modules. The ITO BC-based module not only provides a crack-free CIGS layer but also offers superior device performance owing to the excellent laser scribing quality. Additionally, electrical properties related to respective scribing steps are analyzed in correlation with observed morphologies to evaluate parasitic resistance and optimize the laser scribing conditions. Consequently, a CIGS monolithic-integrated module with 15.03% efficiency at 40.14 cm2 (16.3% at 0.480 cm2) is fabricated on a novel “soda-lime glass/coated-PI/ITO structure”. We propose ITO BC-based cells as promising candidates for achieving high-efficiency and flexible CIGS solar modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call