Abstract
Addressing the issue of low bonding strength in Ti/Mg laminated composites due to interfacial oxidation, this study employs a differential temperature rolling method using longitudinal induction heating to fabricate Ti/Mg composite plates. The entire process is conducted under an argon gas protective atmosphere, which prevents interfacial oxidation while achieving uniform deformation. The effects of reduction on the mechanical properties and microstructure of the composite plates are thoroughly investigated. Results indicate that as the reduction increases, the bonding strength gradually increases, mainly attributed to the increased mechanical interlocking area and a broader element diffusion layer. This corresponds to a transition from a brittle to a ductile fracture at the microscopic tensile-shear fracture surface. When the reduction reaches 47.5%, the Ti/Mg interfacial strength reaches 63 MPa, which is approximately a 20% improvement compared to the bonded strength with previous oxidation at the interface. Notably, at a low reduction of 17.5%, the bonding strength is significantly enhanced by about one time. Additionally, it was found that a strong bonded interface at a high reduction is beneficial in hindering the propagation of interfacial cracks during tensile testing, enhancing the ability of the Ti/Mg composite plates to resist interfacial delamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.