Abstract

The rapid and effective fabrication of polyvinyl alcohol (PVA) hydrogels with good mechanical properties is of great significance yet remains a huge challenge. The preparation of PVA hydrogels via the conventional cyclic freeze-thaw method is intricate and time-intensive. In this study, a pioneering approach involving the utilization of low-temperature continuous freezing is introduced to produce a novel PVA-ethylene glycol (EG) gel. Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM) confirm that with the assistance of EG, PVA molecular chains can self-assemble to generate an abundance of microcrystalline domains at low temperatures, thus improving the mechanical properties of PVA-EG gel. Remarkably, when the mass ratio of H2O/EG is 4:6, the gel's maximum tensile strength can reach 2.5 MPa, which is much higher than that of PVA gels prepared via the freeze-thaw method. The preparation process of PVA-EG gel is simple, and its properties are excellent, which will promote the wide application of PVA tough gel in many fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call