Abstract
The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature (T tran) and enhanced mechanical properties by incorporating flexible poly(ethylene glycol) 400 (PEG400) to form poly(D,L-lactic acid)-based macrodiols (PDLLA-PEG400-PDLLA) and then rigid piperazine (PPZ) as a chain extender to form the desired SMPUUs (PEG400-PUU-PPZ). PEG400 increased M n while maintaining a lower T g of PDLLA-PEG400-PDLLA, which together with PPZ improved the mechanical properties of PEG400-PUU-PPZ. The obtained optimum SMPUU with enhanced mechanical properties (σ y = 24.28 MPa; ɛ f = 698%; U f = 181.5 MJ/m3) and a T g of 40.62°C exhibited sound shape memory properties as well, suggesting a promising SMPUU for in vivo biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.