Abstract

AbstractFlexible ceramic nanofibers are highly desired due to their potential applications in free‐standing catalyst supports, fine particulate filters and flexible electronic devices. In this work, robust SiOC fibrous membranes composed of randomly oriented nanofibers with an average diameter of 550 nm were fabricated by a combination of electrospinning and post heat‐treatment process. The mechanical properties of the as‐prepared membranes were enhanced significantly through in situ embedding of palladium nanoparticles into the SiOC fibers. The optimized palladium‐doped SiOC fibrous membrane demonstrated a low flexural modulus of 7.79 kPa and a high tensile strength of 33.2 MPa. Reduced flaw size, initiation of nanocracks and pinning effect were proposed to explain the enhancement mechanism. Furthermore, the flexible SiOC membrane with excellent corrosion resistance exhibits a high filtration efficiency of 99.6% when the membrane weight is 4.8 g m−2, suggesting efficient filtration applications in harsh environments. This work also provides a feasible strategy for the design and fabrication of the flexible amorphous ceramic fiber membranes for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.