Abstract
Injectable, brushite-forming calcium phosphate cements (CPCs) have great potential as bone replacement materials due to enhanced degradability and long-term inclusion in bone remodeling. However, the use of such brushite-forming CPCs in load-bearing areas is limited by their low mechanical strength. One approach to overcome this limitation is the use of reinforcing fibers. Thus, an injectable, biodegradable, brushite-forming CPC based on beta-tricalcium phosphate/phosphoric acid with fiber reinforcement was developed for minimally invasive surgery. The fibers (diameter 25µm; length 0.25, 1 or 2mm) were extruded from poly(l-lactide-co-glycolide) acid (PLGA) and added to the CPC (2.5, 5 or 7.5% (w/w)). Independent of the fiber content, injectability of the CPC was retained up to a fiber length of 1mm. The addition of all PLGA fiber types increased diametral tensile strength, biaxial flexural strength, and flexural strength by up to 25% (p≤0.05 for the diametral tensile strength for the CPC with 5% (w/w) 1mm fibers and the biaxial flexural strength of the CPC with 5% (w/w) 0.25mm fibers). In contrast, the work of fracture strongly and significantly increased (p<0.01) by up to 12.5-fold. At constant fiber content, the mechanical properties of the fiber-reinforced CPC were mostly augmented with increasing fiber length. Also, the addition of PLGA fibers to the brushite-forming CPC (up to 7.5% (w/w)) only transiently delayed cell growth and did not decrease cell viability. Fiber reinforcement of CPCs thus augments their mechanical strength while preserving the injectability and biocompatibility required for their application in modern surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.