Abstract

A new approach to improve the interfacial matching of carbon fiber-reinforced lithium-aluminum-silicon(Cf/LAS) composites is proposed, which is achieved by Ni nanoparticles catalyzing the formation of a tunable graphite layer on the surface of Cf. The interfacial structure between the composites can be effectively improved by tuning parameters such as Ni2+ content and sintering holding time, and ultimately, the mechanical properties of the composites can be improved. Interestingly, due to the introduction of Ni2+, a yolk-shell type graphite layer is formed between the Cf and LAS, and the bridging effect of the graphite layer improves interfacial bonding. The highest flexural strength (515 ± 30 MPa) and fracture toughness (14.7 ± 1.6 MPa·m1/2) were obtained. Taking Cf/LAS as an example, the relationship between interfacial matching and mechanical properties of composites is systematically investigated and may provide a new idea for the improvement of mechanical properties of fiber-reinforced composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.