Abstract

An efficient slurry injection combined with vibration-assisted vacuum infiltration process has been developed to fabricate 3D continuous carbon fiber reinforced ZrB2-SiC ceramics. Homogenous distribution between carbon fiber and ceramic was achieved successfully, leading to an enhancement in mechanical properties. The Cf-PyC/ZrB2-SiC composite exhibited a typical non-brittle fracture mode with a superior fracture toughness of 6.72 ± 0.21 MPa·m1/2 and an extraordinary work of fracture of 2270 J/m2, respectively, increasing by nearly 14.8 % and 36 % as compared with those of a parent composite fabricated by only slurry injection and slurry infiltration. The enhancement in fracture toughness and work of fracture were attributed to multiple toughening mechanism including crack deflection, PyC coated fiber bundles pull-out and fiber bridging. Moreover, a critical thermal shock temperature difference of 814 °C was achieved, higher than that of traditional ZrB2-based ceramics. This work presents an efficient approach to fabricate high-performance Cf/UHTCs with uniform architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call