Abstract

Bacterial cellulose/hydroxyapatite (BC/HAp) composite is an outstanding candidate for bone tissue engineering. The conventional biomimetic mineralization method takes a long time with unsatisfactory mechanical properties and biocompatibility. Herein, we modified the BC by changing the carbon source to calcium gluconate during the biosynthesis process of BC by bacteria, providing nucleation sites for further mineralization in simulated body fluid. Results show spherical porous HAp in the size of 100–200 nm was fully filled in the three-dimensional network structure of BC nanofibers uniformly within five days of mineralization. Molecular dynamics simulation shows that the aggregation of cellulose units in aqueous solution can enhance the adsorption of calcium ions. By this means, we significantly improved the mechanical properties and biocompatibility of the BC/HAp composite, as well as simplified the preparation process, compared to conventional method, which, therefore, suggests, it could be further studied for biomedical applications such as bone tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.