Abstract

The application of biodegradable Zn-based vascular alloy stents proves to be an ideal solution for addressing cardiovascular diseases. In this work, a Zn-0.8Li-0.4Mn alloy is designed with no biological toxicity, and optimized microstructure and properties through a hot rolling process. The resulting alloy shows a combined enhancement in both mechanical strength and resistance to corrosion. Noteworthy is the effectiveness of rolling deformation in refining alloy grains, promoting the uniform distribution of precipitates, and enhancing strength and ductility. After 90 % deformation, the Zn-0.8Li-0.4Mn alloy demonstrates excellent mechanical properties, with peak yield strength and ultimate tensile strength of 406.0 MPa and 449.1 MPa, respectively, and elongation exceeding 75 %. Corrosion studies indicate a relationship between the degradation rate increase and grain refinement, with the primary corrosion mechanism being pitting corrosion. The corrosion product Li2CO3 exhibits high stability, providing a passivation effect on the alloy surface. This work establishes a theoretical foundation and practical reference for the development of new biodegradable Zn-based alloys tailored for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.