Abstract

This study investigated the mechanical properties and dry-sliding friction and wear behaviors of graphene-reinforced TiAl matrix composites in expectation of providing valuable information for the application of graphene. The results suggested that the incorporation of graphene apparently improved the microhardness, fracture toughness, and tribological properties of the composites. For the composite with 3 wt% graphene, the microhardness increased by 129%, the fracture toughness increased by 149%, the friction coefficient decreased by 37% and the wear rate decreased by 78%. Also, the microstructural analyses of the worn surfaces indicated that three types of graphene-rich films, with different percentages of coverage, were generated on the worn surfaces under various wear conditions. An evolution mechanism of the films as a function of wear conditions was proposed, and the corresponding variation of friction and wear behavior was also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.