Abstract
Particle oxidation constitutes a serious ageing phenomenon in magnetorheological suspensions, bringing about deterioration in performance. This study describes commercial carbonyl iron particles that were successfully coated with poly(amidoamine) dendrons and then applied as an oxidation-resistant dispersed phase in magnetorheological suspensions. A synthesis method was adhered to whereby the particles were sequentially treated with ethylenediamine and methyl acrylate, leading to the formation of generation 2 and 2.5 dendrons; these had the capacity for composite particles with a nano-scale dendritic layer to be prepared on their surfaces. Success in applying the coating was confirmed by various techniques, including XPS, TEM, EDX, FTIR and Raman spectroscopy. The controlled approach adopted to coating the carbonyl iron particles resulted in them exhibiting sufficient oxidation stability, with only an ~ 4.5–4.7% decrease in saturation magnetization. Of interest was that their magnetorheological suspensions demonstrated ca 4.8% and 4% higher dynamic yield stress than a suspension based on non-modified particles at the highest intensity of magnetic field investigated, i.e. 438 kA m–1. Notably, sedimentation stability was evaluated by a unique method that involved the use of a tensiometer with a specific testing probe. The aforementioned coating process led to enhanced sedimentation stability of the magnetorheological suspensions based on coated particles possibly due to decrease in the overall density of the particles, enhanced dispersion stability and reduction in the size of their agglomerates in the silicone oil mixtures that were confirmed by optical microscopy. Modification of the particles as proposed has the potential to overcome one of the primary drawbacks of magnetorheological suspensions, this being oxidation instability (which leads to what is referred to as “in-use-thickening”), without negatively affecting their performance in the presence of a magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.