Abstract

This paper is concerned with the exploration of the role of transverse normal and shear deformations on enhancing the magnetoelectric (ME) coefficient of multiferroic bilayer composite beams composed of a piezoelectric layer and a piezomagnetic layer. Analytical models have been derived based on the displacement field which accounts for both the transverse normal and shear deformations, Timoshenko beam theory and Euler Bernoulli beam theory. The induced flexoelectricity in the piezoelectric layer due to axial strain gradient and transverse shear strain gradient has also been taken into consideration for estimating the ME coefficient. It has been found that the contribution of transverse normal strain in the piezoelectric layer for enhancing the ME coefficient is significantly larger than that due to axial strain, transverse shear strain and flexoelectricity. For the particular values of the thicknesses of the piezoelectric layer and the piezomagnetic layer, the ME coefficient remains invariant for both thick and thin multiferroic composite beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call