Abstract

The magnetization process and adiabatic demagnetization of antiferromagnetic spin-1/2 XXZ Heisenberg clusters in the shape of regular polyhedra (tetrahedron, octahedron, cube, icosahedron and dodecahedron) are examined using the exact diagonalization method. It is demonstrated that a quantum (xy) part of the XXZ exchange interaction is a primary cause for the presence of additional intermediate magnetization plateaux and steps, which are totally absent in the limiting Ising case. The only exception to this rule is the spin-1/2 XXZ Heisenberg tetrahedron, which shows just a quantitative shift of the level-crossing fields related to two magnetization steps. It is shown that spin-1/2 XXZ Heisenberg regular polyhedra exhibit an enhanced magnetocaloric effect in the proximity of magnetization steps and jumps, which are accompanied with a rapid drop (rise) of temperature just above (below) the level-crossing field when the magnetic field is removed adiabatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.