Abstract
Magnetic refrigeration, resulting from the magnetocaloric effect of a material around the magnetic phase-transition temperature, is a topic of great interest as it is considered to be an alternate energy solution to conventional vapor-compression refrigeration. The viability of a magnetic refrigeration system for magnetic cooling can be tested by exploiting materials in various forms, from bulk to nanostrucutres. In this study, magnetocaloric properties of self-assembled Mn3O4-La(0.7)Sr(0.3)MnO3 nanocomposites, with varying doping concentrations of Mn3O4 in the form of nanocrystals embedded in the La(0.7)Sr(0.3)MnO3 matrix, are investigated. The temperatures corresponding to the paramagnetic-to-ferromagnetic transitions are higher, and the values of change in magnetic entropy under a magnetic field of 2 T show an enhancement (highest being ∼130%) for the nanocomposites with low doping concentrations of Mn3O4, compared to that of pure La(0.7)Sr(0.3)MnO3 thin films. Relative cooling power remain close to those of La(0.7)Sr(0.3)MnO3. The enhanced magnetic phase-transition temperature and magnetocaloric effect are interpreted and evidenced in the framework of interfacial coupling between Mn3O4 and La(0.7)Sr(0.3)MnO3. This work demonstrates the potentiality of self-assembled nanostructures for magnetic cooling near room temperature under low magnetic fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.