Abstract
Mn rich Ni-Mn-Sn and Ni-Mn-Co-Sn alloy films were deposited on Si (100) substrate by dc magnetron sputtering from Ni50Mn37Sn13 alloy target at 1.8Pa Ar pressure with 70W dc power. Co was introduced by placing Co chips on the Ni-Mn-Sn target. As-deposited films were vacuum annealed at 823K for 1h. X-ray diffraction patterns of the films revealed modulated 14M structure of the martensite phase at room temperature. Magnetic entropy change (ΔSm) across the Curie temperature of the ferromagnetic films was estimated from initial isothermal magnetization curves using Maxwell’s equation. ΔSm and refrigeration capacity (RC) of Ni-Mn-Sn and Ni-Mn-Co-Sn films increased with increasing film thickness. Upon Co substitution in Mn/Sn site(s), ΔSm and RC increased more remarkably. The change is more prominent in the case of 360nm films, wherein a 3.8-fold increase in ΔSM and 8.9-fold increase in RC was observed. Introduction of Co increased the magnetic moment and broadened the magnetic transition. These factors increased ΔSm and RC in Co substituted Ni-Mn-Sn alloy. Since TC shifted to higher temperatures with Co substitution, operating temperature of these magnetic refrigerants also shifted to higher temperature. This study indicates the possibility of developing high temperature cooling devices and waste energy harvesters using these films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.