Abstract
AbstractMagnetic spinel oxides have attracted extensive research interest due to their rich physics and wide range of applications. However, these materials invariably suffer suppressed magnetization, due to structural imperfections (e.g., disorder, anti‐site defects, etc.). Herein, a dramatic enhanced magnetization is obtained with an increasement of 5 µB/u.c in CoFe2O4 (CFO) through ionic liquid gating induced hydrogen doping. The intercalated hydrogen ions lead to both distinct lattice expansion of ≈0.7% and notable Fe valence state reduction through electron doping, in which ≈17% Fe3+ is reduced into Fe2+. These facts collectively trigger a site‐specific spin‐flip on tetrahedrally coordinated Co2+ sites that enhances the net ferrimagnetic moment nearly to its theoretical maximum for perfect CFO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.