Abstract

Timely, accurate, and rapid grasping of dynamic change information in magnetic actuation soft robots is essential for advancing their evolution toward intelligent, integrated, and multifunctional systems. However, existing magnetic-actuation soft robots lack effective functions for integrating sensing and actuation. Herein, we demonstrate the integration of distributed fiber optics technology with advanced-programming 3D printing techniques. This integration provides our soft robots unique capabilities such as integrated sensing, precise shape reconstruction, controlled deformation, and sophisticated magnetic navigation. By utilizing an improved magneto-mechanical coupling model and an advanced inversion algorithm, we successfully achieved real-time reconstruction of complex structures, such as 'V', 'N', and 'M' shapes and gripper designs, with a notable response time of 34 ms. Additionally, our robots demonstrate proficiency in magnetic navigation and closed-loop deformation control, making them ideal for operation in confined or obscured environments. This work thus provides a transformative strategy to meet unmet demands in the rapidly growing field of soft robotics, especially in establishing the theoretical and technological foundation for constructing digitized robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call