Abstract

Despite the high theoretical energy product and low material cost of Fe-rich 2:17-type Sm-Co-Fe-Cu-Zr magnets, it is still a big challenge to simultaneously achieve high energy product and high coercivity due to damaged cellular nanostructure, i.e. insufficient cell boundary precipitates. In this work, both high energy product (∼30.29 MGOe) and high coercivity (∼26.24 kOe) have been achieved in Fe-rich Sm24.8CobalFe20.5Cu5.2Zrx (x wt%) magnets through optimizing Zr content. It reveals that raising Zr content from 1.5 wt% to 2.5 wt% can effectively refine the cellular nanostructure, which corresponds to an increased volume fraction of cell boundary precipitates. However, excess Zr content (e.g. above 2.5 wt%) leads to the formation of micron-sized Zr-rich Zr6Co23 soft magnetic particles, weakening the hard magnetic performance. In particular, the high Zr-content (3.5 wt%) magnet exhibits strongly inhomogeneous chemistry as well as cellular nanostructure in the vicinity of micron-sized Zr6Co23 particles (i.e. heterogeneous distribution of cell boundary precipitates), deteriorating both squareness factor and coercivity. As a result, the optimum magnetic property combination is achieved at an intermediate Zr concentration by balancing the contradictive effects between cell refinement and soft magnetic impurities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call