Abstract

In this study, we evaluated the cellular influx and cytokine environment in the lungs of mice made immune by prior vaccination with Mycobacterium bovis bacillus Calmette-Guérin compared with control mice after infection with Mycobacterium tuberculosis to characterize composition of protective lesions in the lungs. Immune mice controlled the growth of the M. tuberculosis challenge more efficiently than control mice. In immune animals, granulomatous lesions were smaller and had a more lymphocytic core, less foamy cells, less parenchymal inflammation, and slower progression of lung pathology than in lungs of control mice. During the chronic stage of the infection, the bacterial load in the lungs of immune mice remained at a level 10 times lower than control mice, and this was associated with reduced numbers of CD4P(+P) and CD8P(+P) T cells, and the lower expression of protective (IL-12, IFN-gamma), inflammatory (TNF-alpha), immunoregulatory (GM-CSF), and immunosuppressive (IL-10) cytokines. The immune mice had higher numbers of CD11b- CD11c(high) DEC-205(low) alveolar macrophages, but lower numbers of CD11b+ CD11c(high) DEC-205(high) dendritic cells, with the latter expressing significantly lower levels of the antiapoptotic marker TNFR-associated factor-1. Moreover, during the early stage of chronic infection, lung dendritic cells from immune mice expressed higher levels of MHC class II and CD40 molecules than similar cells from control mice. These results indicate that while a chronic disease state is the eventual outcome in both control and immune mice infected with M. tuberculosis by aerosol exposure, immune mice develop a protective granulomatous lesion by increasing macrophage numbers and reduced expression of protective and inflammatory cytokines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.