Abstract

A/J mice bearing either a mutation in the p53 gene or a Kras2 heterozygous deficiency were investigated for their susceptibility to tobacco smoke-induced lung tumorigenesis. Transgenic mice and their wild-type littermates were exposed to mainstream tobacco smoke (MS) for 5 mo, followed by 4 mo of recovery in filtered air. In sham (filtered air) groups, p53 transgenic mice did not exhibit a higher tumor multiplicity but did exhibit larger tumors, with tumor load increased 3.6-fold, when compared with wild-type mice. With exposure to MS, tumor multiplicity was increased 60% but there was a strikingly increased tumor load (15.9-fold) in p53 transgenic mice. Increased tumor load (5.3-fold) but not tumor multiplicity was seen in MS-exposed Kras2 heterozygous deficient mice. Interestingly, MS exposure did not increase benzo[a]pyrene-induced lung tumorigenesis when MS exposure was initiated after BaP treatment. These results indicate that a p53 mutation or loss of a Kras2 allele increases susceptibility to MS-induced lung tumor development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.