Abstract

In a planetary-rover exploration mission, stereovision-based 3D reconstruction has been widely applied to topographic mapping of the planetary surface using stereo cameras onboard the rover. In this study, we propose an enhanced topographic mapping method based on multiple stereo images taken at the same rover location with changing illumination conditions. Key steps of the method include dense matching of stereo images, 3D point-cloud generation, point-cloud co-registration, and fusion. The final point cloud has more complete coverage and more details of the terrain than that conventionally generated from a single stereo pair. The effectiveness of the proposed method is verified by experiments using the Yutu-2 rover, in which two data sets were acquired by the navigation cameras at two locations and under changing illumination conditions. This method, which does not involve complex operations, has great potential for application in planetary-rover and lander missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call