Abstract

CO2 methanation is a promising route for converting CO2 into a marketable natural gas. The major challenge of this process is to enhance CO2 methanation catalytic activity at low temperature. This work showcases a supported-catalysts phase engineering strategy to overcome the challenge. We report a ∼ 24% decrease in the activation energy of methanation reaction over Ni/monoclinic-ZrO2 due to the optimization of ZrO2 crystal phases and thus turnover frequency of CO2 methanation at 240 °C increases by ∼ 116% than Ni/cubic-ZrO2. Both experimental characterizations and theoretical calculations confirm the high local electron density of Ni over Ni/monoclinic-ZrO2, a key factor to present superior performance for CO2 methanation, resulting from its high oxygen vacancies and electronic metal-support interactions. This is beneficial to the adsorption and dissociation of H2 and the hydrogenation of formate intermediate. Hence our work might open an avenue for rational design of advanced low-temperature CO2 hydrogenation catalysts via a phase engineering strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call