Abstract

This paper introduces a cost-effective control method to enhance the low voltage ride-through (LVRT) capability and smooth the output power of a three-phase multilevel flying capacitor inverter (FCI) in wind turbine-based permanent magnet synchronous generator (PMSG). The proposed approach utilizes the energy storage capability of flying capacitors to mitigate wind power fluctuations and address short-duration outages and deep voltage sags. Additionally, a nonlinear controller based Lyapunov theory is developed to regulate capacitor voltages, improve power factors, and balance DC-link voltage. Numerical simulations are conducted in MATLAB/SimPower systems environment to validate the effectiveness of this comprehensive control strategy across different grid operation scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.