Abstract

Optimal defects-per-unit test plans based on posterior odds ratios are developed for the disposition of product lots. The number of nonconformities per unit is modeled by the Conway–Maxwell–Poisson distribution rather than the typical Poisson model. In essence, a submitted batch is conforming if its posterior acceptability is sufficiently large. First, a useful approximation of the optimal test plan is derived in closed form using the asymptotic normality of the log ratio. A mixed-integer nonlinear programming problem is then solved via Monte Carlo simulation to find the smallest number of inspected items per lot and the maximum tolerable posterior odds ratio. The methodology is applied to the manufacturing of paper and glass. The suggested sampling plan for lot sentencing provides the specified protections to both manufacturers and customers and minimizes the needed sample size. In terms of inspection effort and accuracy, the proposed approach is virtually an advantageous extension of the classical frequentist perspective. In many practical cases, it yields more precise assessments of the current consumer and producer risks, as well as more realistic decision rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.